214 research outputs found

    When SAM Meets Medical Images: An Investigation of Segment Anything Model (SAM) on Multi-phase Liver Tumor Segmentation

    Full text link
    Learning to segmentation without large-scale samples is an inherent capability of human. Recently, Segment Anything Model (SAM) performs the significant zero-shot image segmentation, attracting considerable attention from the computer vision community. Here, we investigate the capability of SAM for medical image analysis, especially for multi-phase liver tumor segmentation (MPLiTS), in terms of prompts, data resolution, phases. Experimental results demonstrate that there might be a large gap between SAM and expected performance. Fortunately, the qualitative results show that SAM is a powerful annotation tool for the community of interactive medical image segmentation.Comment: Preliminary investigatio

    Approximation d'une assignation basique de croyance par compatibilité des éléments focaux

    Get PDF
    International audienceThe theory of belief functions is an important tool in the field of information fusion. However, the fusion of Basic Belief Assignments (BBAs) requires high computational cost and long computing time when a large number of focal elements are involved in the fusion rules. This problem becomes a bottleneck of application of Belief Functions (BF) in high-dimensional real problems. To overcome this drawback, many approaches were proposed to approximate BBAs to reduce the computational complexity in the fusion process. In this paper, we present a novel method based on the compatibility of focal elements to approximate a BBA by removing some focal elements of the original BBA. Besides, a new mass assignment strategy based on the distance of focal elements is proposed. Several examples, simulations and related analyses are provided to illustrate the interest and efficiency of the proposed method

    Combination of Sources of Evidence with Distinct Frames of Discernment

    Get PDF
    International audienceMulti-source information fusion strategies in target recognition have been widely applied. Generally, each source is defined and modelled over a common frame composed of the hypotheses to discern. However, in practice, the independent sources of evidence can refer to distinct frames of discernment in terms of the hypotheses they consider. Under this condition, the classical combination process cannot be applied directly. Working with distinct frames of discernment for information fusion is a problem often encountered in the development of recognition systems which requires a particular attention. In order to combine such sources, this paper presents a new combination method which splits the process of fusion into two steps: construction of granular structure, calculation of belief mass, followed by the fusion process. Our simulations results show that the proposed method can effectively solve the problem of fusion of sources defined on distinct frames

    Rough Set Classifier Based on DSmT

    Get PDF
    International audienceThe classifier based on rough sets is widely used in pattern recognition. However, in the implementation of rough set-based classifiers, there always exist the problems of uncertainty. Generally, information decision table in Rough Set Theory (RST) always contains many attributes, and the classification performance of each attribute is different. It is necessary to determine which attribute needs to be used according to the specific problem. In RST, such problem is regarded as attribute reduction problems which aims to select proper candidates. Therefore, the uncertainty problem occurs for the classification caused by the choice of attributes. In addition, the voting strategy is usually adopted to determine the category of target concept in the final decision making. However, some classes of targets cannot be determined when multiple categories cannot be easily distinguished (for example, the number of votes of different classes is the same). Thus, the uncertainty occurs for the classification caused by the choice of classes. In this paper, we use the theory of belief functions to solve two above mentioned uncertainties in rough set classification and rough set classifier based on Dezert-Smarandache Theory (DSmT) is proposed. It can be experimentally verified that our proposed approach can deal efficiently with the uncertainty in rough set classifiers

    Robot Map Building from Sonar and Laser Information using DSmT with Discounting Theory

    Get PDF
    In this paper, a new method of information fusion – DSmT (Dezert and Smarandache Theory) is introduced to apply to managing and dealing with the uncertain information from robot map building. Here we build grid map form sonar sensors and laser range finder (LRF). The uncertainty mainly comes from sonar sensors and LRF. Aiming to the uncertainty in static environment, we propose Classic DSm (DSmC) model for sonar sensors and laser range finder, and construct the general basic belief assignment function (gbbaf) respectively. Generally speaking, the evidence sources are unreliable in physical system, so we must consider the discounting theory before we apply DSmT. At last, Pioneer II mobile robot serves as a simulation experimental platform. We build 3D grid map of belief layout, then mainly compare the effect of building map using DSmT and DST. Through this simulation experiment, it proves that DSmT is very successful and valid, especially in dealing with highly conflicting information. In short, this study not only finds a new method for building map under static environment, but also supplies with a theory foundation for us to further apply Hybrid DSmT (DSmH) to dynamic unknown environment and multi-robots- building map together

    Fusion of imprecise qualitative information

    Get PDF
    In this paper, we present a new 2-tuple linguistic representation model, i.e. Distribution Function Model (DFM), for combining imprecise qualitative information using fusion rules drawn from Dezert-Smarandache Theory (DSmT) framework. Such new approach allows to preserve the precision and efficiency of the combination of linguistic information in the case of either equidistant or unbalanced label model. Some basic operators on imprecise 2-tuple labels are presented together with their extensions for imprecise 2-tuple labels. We also give simple examples to show how precise and imprecise qualitative information can be combined for reasoning under uncertainty. It is concluded that DSmT can deal efficiently with both precise and imprecise quantitative and qualitative beliefs, which extends the scope of this theory

    Biologically Inspired Intelligence with Applications on Robot Navigation

    Get PDF
    Biologically inspired intelligence technique, an important embranchment of series on computational intelligence, plays a crucial role for robotics. The autonomous robot and vehicle industry has had an immense impact on our economy and society and this trend will continue with biologically inspired neural network techniques. In this chapter, multiple robots cooperate to achieve a common coverage goal efficiently, which can improve the work capacity, share the coverage tasks, and reduce the completion time by a biologically inspired intelligence technique, is addressed. In many real-world applications, the coverage task has to be completed without any prior knowledge of the environment. In this chapter, a neural dynamics approach is proposed for complete area coverage by multiple robots. A bio-inspired neural network is designed to model the dynamic environment and to guide a team of robots for the coverage task. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting neural equation. Each mobile robot treats the other robots as moving obstacles. Each robot path is autonomously generated from the dynamic activity landscape of the neural network and the previous robot position. The proposed model algorithm is computationally simple. The feasibility is validated by four simulation studies

    Adaptive Synergetic Controller for Stabilizing the Altitude and Angle of Mini Helicopter

    Get PDF
    This research proposes ASC (Adaptive Synergetic Controller) for the nonlinear model of MH (Mini Helicopter) to stabilize the desired altitude and angle. The model of MH is highly nonlinear, underactuated and multivariable in nature due to its dynamic uncertainties and restrictions of velocities during the flight. ASC can force the tracking errors of the system states converges to zero in a finite interval of time. The MH system requires smooth controller and fast precise transition response from initial state till the desired state, therefore the parametric calculations and simulations can be done by the proposed ASC algorithm. It is validated that the above simulated results of the proposed controller have a better convergence rate and smoother stability response in order to track the desired altitude and angle when compared with SMC (Sliding Mode Controller). Moreover, it does not need any linearization, transformation and variations in the system model
    • …
    corecore